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Parity Nonconservation in Electromagnetic Systems 

E. Comay 1 

Received January 9, 1992 

It is shown that a correlated motion of a charge-monopole system emits radiation 
that violates parity conservation. 

It is well known that ordinary electrodynamics of  charges and fields 
conserves parity. In particular, fields of  an electromagnetic source which is 
invariant under parity transformation r --} - r  satisfy parity invariance. The 
intensity of  radiation S = E x B/4zr emitted from this kind of  source satisfies 

S(R) = - S ( - R )  (1) 

at every point R. An example of  such a system is a circular antenna whose 
center is at the origin. This source is invariant under parity transformation 
and a time-dependent current along the circle emits radiation that satisfies 
(1). The objective of  the present work is to prove that one can perform 
thought experiments with a charge-monopole system that violates parity 
invariance. In the system discussed, the motion of  the charge alone conserves 
parity. The same is true for the motion of the monopole. However, the 
interference part of  the radiation emitted from the correlated motion of  these 
particles is inconsistent with parity conservation. 

Consider a system of  a single charge Q attached to the circumference 
of  a disk which rotates in the (x, y) plane around the z axis (see Figure I a). 
Let r = 1 and co denote the disk's radius and its angular velocity, respectively. 
The disk is made of  an insulating material and its electric and magnetic 
susceptibilities are the same as those of  the vacuum. Calculations are carried 
out in units where c =  1. Greek indices range from 0 to 3. The metric is 
diagonal and its entries are (1, -1 ,  -1 ,  -1 ) .  The nonrelativistic limit holds 
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Fig, 1. 

(a) (b) 
(a) A disk rotates around the z axis, carrying a charge Q. (b) The result of a parity 

and the charge's velocity satisfies 

v = co << 1 (2) 

The Lienard-Wiechert fields of  the rotating charge are 

[ l - v 2  1 R x < ( R _ R v ) •  (3) 
E = O ( R -  R -  v) 3 ( R -  Rv) q ( R -  R .  v) 3 

B = R x E /R  (4) 
where all quantities on the right-hand sides are taken at the retarded time. 
R denotes the radius vector from the charge's location to the point where 
the fields are measured, v and a denote the charge's velocity and acceleration, 
respectively (see, e.g., Landau and Lifshitz, 1975, p. 162). 

Let us look at two points Pi = (0, 0, 4-z0) on the z axis at the wave zone. 
Thus, the relation 

C0Zo >> 1 (5) 

holds. The z component of the Poynting vector of the radiation emitted by 
the rotating charge and measured at these points is calculated. 

The first term of (3) behaves like r -E' whereas the second one decreases 
like r -j .  Hence, using (5), one obtains the well-known result which says that 
the first term of (3) is ignored at the  wave zone. Let t = 0 be the retarded 
time of  the charge with respect to the time when the fields are measured at 
P;. The charge's kinematic variables at t = 0 are 

r = (1, 0, 0) (6) 

v = (0, co, O) (7)  

a = ( - c o  2, o, o)  (8)  

transformation applied to the system depicted in (a). 
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Hence, at the instant considered, the retarded radius vector is 

R, = ( -  1, 0, +z0) --- (0, 0, • (9) 

where the positive sign refers to P~ and the negative one refers to P2. 
Substituting these values into the second term of (3) and (4) and using 

(2) and (5), one finds 

Ex(P,) ~ Qco2/zo (10) 

Ey(P;) ~0  (11) 

s~(P,) _~ 0 (12) 
By(P,) -~ • (13) 

Here, as in (9), the positive sign refers to Pj and the negative one refers to 
P2. These results yield the required z components of the Poynting vector 
at Pi, 

S~-(PI) -~ • Q2o~'/z~ (14) 

where the positive and negative signs apply as in (9) and (13). 
This expression proves that the nonnegligible part of the Poynting vec- 

tor at P~ is directed outward and represents radiation emitted by the source. 
Using the cylindrical symmetry of the system, one finds that (14) is time- 
independent. 

It is evident that these results provide an example of parity conservation. 
This property is shown in detail in a covariant way which will be helpful in 
a later discussion of the monopole case. Subscripts (e) and (m) denote 
quantities related to charges and monopoles, respectively. The field tensor 

0 -Ex -Ey -E~) 
F Ue y E~ 0 -B~ By 

= Ey Bz 0 -Bx 
e~ -By 8~ o 

(15) 

is used in a formulation of the charge's 4-acceleration, as expressed by the 
Lorentz force 

m(e)a(e) - QF(e)v~e)v (16) 

where re(o, o(e), and a(e) denote the charge's mass, 4-velocity, and 4-accelera- 
tion, respectively. The 4-velocity is 

v~e) = y(1, vx, Vy, v~) (17) 

and y = ( 1 - v 2)-1/2. 
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The parity operator takes the form (100 
0 - 1  0 

e v  = 
0 -1  

0 0 - 

08) 

Let us see how a 4-vector transforms under P~. Applying it to the 4-velocity 
(17), one obtains 

,u v P vv(e) = y(1, - vx ,  - vy  , -vz)  (19) 

This result shows that the spatial components of  a 4-vector change sign 
under parity transformation whereas its time component remains as is. Let 
us turn to the parity transformation of  tensors. As an example, the fields 
tensor (15) is examined. Here one finds 

,,,, D,,~,,~ - E x  0 -B~ By 
xax  pr (e) = _ E  r B= 0 

-e ,  -B, nx 

(20) 

This result means that the components (0, 1), (0, 2), and (0, 3) and their 
symmetric ones change sign, whereas all other components of a tensor are 
left unchanged. If  in the case of  the antisymmetric tensor (15) one wishes to 
use a 3-dimensional terminology, one may say that the electric field trans- 
forms like a vector and the magnetic field transforms like an axial vector. 

The components of the Poynting vector S are the (0, 1), (0, 2), and 
(0, 3) entries of  the field's energy-momentum tensor (see, e.g., Landau and 
Lifshitz, 1975, p. 81) 

v*" l { u,, P*' 1 ,,p . ~  
T(.f)=-~-~ IF F g,,p+-~ F F,,og u ) (21) 

Evidently, the Poynting vector transforms like a vector. 
These general results can be applied to the specific experiment discussed 

here. The position of  the charge at t=  0 transforms as follows: r ( 0 ) -  
(1, 0, 0) --+ ( -1 ,  0, 0) (see Figure lb). The kinematic variables v and a 
undergo a similar transformation. It is clear that a parity transformation of  
the rotating charge takes it to a state which is precisely the same as its 
state at t = it/co. Therefore, time-independent quantities associated with the 
source can be used in a test of  parity conservation. A parity transformation 
of  the points P~ is PI ~--*P2. As shown above, the same relation holds for 
the two Poynting vectors Si at P~. These results are consistent with parity 
conservation by the system. 
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The: second system is like the first one, but a monopole replaces the 
rotating charge. As before, we are interested in the fields at the two points 
P~ at the wave zone. 

The electrodynamics of a system of monopoles is obtained from that 
of charges by means of the duality transformations (Goddard and Olive, 
1978) 

0 -Bx -By 

F , ~  = ~ V a p g u y g # s F r ~  = 0 E~ 
-E~ 0 
Ey 

(22) 

e - - ,  g ;  g - ,  - e  (23) 

where e u#~8 is the completely antisymmetric unit tensor of the fourth rank. 
These transformations yield the Lienard-Wiechert fields of a monopole 

F 1 0 2 
R x ( ( R -  Rv) x a)]  (24) l 

B = g L ( R ~ _ v i  3 (R-Rv)q  (R_R.v)3  

E = - R  x B / R  (25) 

The fields (22) are related to the monopole dynamics in a covariant way, as 
(15) was used in (16), 

mf, , , )~m ) = ,n r'*~ ,'.. (26) ~ (m) u(m)v 

The parity properties of each element of a monopole system are 
obtained from this covariant form of monopole dynamics in an analogous 
way to that used in the derivation of (19) and (20). In particular, an examina- 
tion of the tensor (22) and the force (26) shows that, in the monopole world, 
magnetic fields transform like vectors and electric fields transform like axial 
vectors. These properties are used in the evaluation of the second experiment. 

The fields of the rotating monopole at Pj are obtained from (24) and 
(25) by arguments which are analogous to the ones used previously for 
the charge. The same is true for the Poynting vector. Under the parity 
transformation (18), one obtains analogous quantities. It follows that the 
monopole, like the charge of the previous system, emits radiation that satis- 
fies parity conservation. 

The two experiments described above are elements of the main experi- 
ment discussed in this work. Consider a system made up of a charge Q and 
a monopole g, where 

g = Q (27) 
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Fig. 2. A disk rotates around the z axis. A charge Q and 
a monopole g are attached to the disk's circumference at 
points that make an angle of Jr/2. 

These particles are attached to a rotating disk like the one discussed above 
(see Figure 2). Let t = 0  be the retarded time. At this instant, the charge is 
at rl = (1, 0, 0) and the monopole is at rE = (0, 1, 0). As before, we are inter- 
ested in the radiation fields at the two points Pi at the wave zone. Relying 
on the linearity of classical electrodynamics, one can readily use the fields 
associated with the charge as obtained earlier in (10)-(13). Due to the cylin- 
drical symmetry of  the problem, one finds the same retarded time for 
the charge and the monopole with respect to Pi. At t =  0, the monopole's 
kinematic variables are 

rim ) = (0, l, O) (28) 

V(m) = (--CO, 0, 0) (29) 

a(m) = (0, --02, 0) (30) 

Using (24)-(30) and making the same approximations as before, one finds 
that, at Pi, the fields associated with the monopole g are 

Bx(P,) ~ -0  (31) 

By(P,) "-~gcoZ/zo (32) 

Ex(Pi) -~ :t:gco2/Zo (33) 

Ey(Pi)  ~ 0 (34) 

In (33), as in earlier cases, the positive sign refers to P1 and the negative one 
refers to P2. 
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The fields (31)-(34), together with (10)-(13), yield the overall fields at 
Pi. Using (27), one finds at PI 

Ex(P0 -~ 2Qco2/zo (35) 

Ey(P~) --0 (36) 

Bx(PI)-~0 (37) 

By(Pi) ~-2Qco2/Zo (38) 

On the other hand, the combined fields at P2 are 

E(P2) ~ B(P2) - 0 (39) 

Thus, the corresponding z components of the Poynting vectors are 

Sz(PI) - 4Q2o~4/z 2 (40) 

S~(P2) - 0  (41) 

Due to the symmetry of the system under rotation around the z axis, 
one finds that the z components of the Poynting vector do not vary in time. 
Hence, there is an asymmetry of the radiation emitted in the positive and 
the negative directions of the z axis. This result proves that in spite of parity 
conservation by each element of the system, namely by the charge alone and 
by the monopole alone, the interference term of the radiation fields breaks 
parity. 

It is not difficult to find the origin of the phenomenon described above. 
It was shown previously that magnetic fields of charges (15) and magnetic 
fields of monopoles (22) take opposite parities. The same is true for their 
electric fields. However, the energy-momentum tensor (21) takes the same 
form if the photon's fields of charges (15) are replaced by the photon's fields 
of monopoles (22). Hence, summing these fields in order to obtain the 
overall photon fields, one adds quantities having opposite parities and parity 
violation follows. Therefore, one should not be surprised to find parity 
violating properties whose geometric pattern resembles the one obtained by 
Wu et al. (1957) in the celebrated experiment that demonstrated parity 
violation in weak interactions. 

The analysis carried out in this work proves, by means of an appropriate 
example, that parity nonconservation is an inherent property of a classical 
charge-monopole system. An essential element in the construction of a 
parity-violating system is the correlated motion of charges and monopoles. 
This motion yields interference that breaks the symmetry of electromagnetic 
waves emitted from the system at the two directions of the z axis. It is 
interesting to note that the effect disappears if the charge and the monopole 
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are fused into a single particle (dyon), because here no interference of radia- 
tion fields takes place. 
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